Как приготовить молярный раствор солей
§7.7 Концентрация раствора.
На практике часто приходится иметь дело с растворами, имеющими строго заданное содержание в них растворенного вещества . Приведем несколько примеров.
Во-первых, это приготовление различных лекарственных растворов. Если в аптеке случайно произойдет ошибка с количеством лекарства в его растворе, то последствия могут быть самыми плачевными.
Во-вторых, многие химические реакции проводят в растворах. И здесь ошибки могут приводить к печальным результатам. Например, если фотограф ошибется при растворении проявителя, то фотографии либо не проявятся, либо будут испорчены. Другой пример: если залить в аккумулятор раствор, в котором содержание серной кислоты будет меньше или больше требуемого, то аккумулятор либо не будет работать, либо выйдет из строя.
Еще один пример из лабораторной практики. Для получения бромистого калия (KBr) взяли два раствора: HBr и KOH. Из-за ошибки при приготовлении растворов гидроксид калия KOH добавили в воду в гораздо большем количестве, чем это требовалось для реакции обмена:
H Br + K OH = K Br + H 2 O
В результате полученный водный раствор KBr оказался безнадежно испорченным примесью непрореагировавшего, очень едкого гидроксида калия KOH.
Во всех перечисленных случаях было не учтено или нарушено заданное содержание вещества в растворе. Давайте разберемся в том, как правильно выражать это содержание и как правильно готовить раствор, если содержание вещества в растворе задано.
Один из способов выражения количества вещества в растворе – задание МАССОВОЙ ДОЛИ РАСТВОРЕННОГО ВЕЩЕСТВА .
Массовая доля растворенного вещества – это отношение массы растворенного вещества m 1 к общей массе раствора m, выраженное в процентах.
Пример 1. Для лечения гипертонической болезни (повышенное давление) применяют 25%-ный раствор сульфата магния MgSO 4 . Это означает, что в 100 г такого раствора содержится 25 г MgSO 4 . Здесь выделено слово “раствора”. Действительно, если мы взвесим 25 г сульфата магния и просто растворим в 100 г воды, то нужного нам раствора не получим.
Как же приготовить 25%-ный раствор? Надо взвесить на весах 25 г безводного сульфата магния и отмерить мензуркой 75 мл воды (либо взвесить на весах 75 г воды, что одно и то же). Затем сульфат магния надо высыпать в воду и перемешать до полного растворения. Получится 100 г раствора (25 г + 75 г = 100 г), в котором массовая доля сульфата магния составляет точно 25 %.
** Если для взвешивания 25 г MgSO 4 не найдется безводной соли, а в наличии окажется только более распространенный кристаллогидрат MgSO 4 . 7H 2 O, то необходимо взять больше соли. Предварительно следует рассчитать, в каком количестве MgSO 4 . 7H 2 O содержится 25 г MgSO 4 и взвесить именно это рассчитанное количество MgSO 4 ·7H 2 O. Соответственно, на приготовление такого раствора пойдет меньше воды, потому что часть ее уже имеется в кристаллогидрате.
Пример 2. Для заливки в новый автомобильный аккумулятор нужен 36%-ный раствор серной кислоты. Это означает, что в 100 г такого раствора содержится 36 г серной кислоты и 64 г воды (100 г — 36 г = 64 г.). Массовая доля серной кислоты в таком растворе составляет 36%.
Разумеется, 100 г раствора – слишком маленькое количество для автомобильного аккумулятора, поэтому приготовим 10 кг раствора. Для этого увеличим все цифры в 100 раз. Итак, нам потребуется взвесить на весах (36 г х 100) = 3600 г или 3,6 кг крепкой (безводной) серной кислоты и отмерить (64 г х 100) = 6400 г или 6,4 л дистиллированной воды.
Осторожно смешаем серную кислоту с водой (происходит сильный разогрев). Получим 10 кг 36%-ного раствора серной кислоты, который после охлаждения можно заливать в аккумулятор.
** Водитель, который не очень усердно изучал в школе химию, может легко ошибиться, взяв вместо 3,6 кг серной кислоты 3,6 л серной кислоты. В этом случае аккумулятор будет испорчен, потому что количество H 2 SO 4 в растворе окажется намного больше требуемого.
Дело в том, что серная кислота – довольно «тяжелая» жидкость, ее плотность 1,84 кг/л. Можно подсчитать, какой объем займет серная кислота массой 3,6 кг:
1 л H2 SO 4 весит 1,84 кг (плотность серной кислоты)
х л H2 SO 4 весят 3,6 кг
Отсюда х = 1 л . 3,6 кг/1,84 кг = 1,956 л – такой объем (меньше двух литров!) занимает концентрированная кислота весом 3,6 кг.
Массовую долю растворенного вещества называют также ПРОЦЕНТНОЙ КОНЦЕНТРАЦИЕЙ раствора.
Концентрация – это относительное количество растворенного вещества в растворе.
Помимо процентной концентрации, часто удобно пользоваться МОЛЯРНОЙ КОНЦЕНТРАЦИЕЙ .
Молярная концентрация С – это отношение количества растворенного вещества v (в молях) к объему раствора V в литрах.
Единица молярной концентрации – моль/л. Зная число молей вещества в 1 л раствора, легко отмерить нужное количество молей для реакции с помощью подходящей мерной посуды.
В качестве примера рассмотрим получение нерастворимого в воде хлорида серебра (AgCl) с помощью реакции обмена:
AgNO 3 + NaCl = Ag Cl (осадок) + Na NO 3
Кстати, не нужно запоминать, какие соли растворимы, а какие нерастворимы в воде. Для этого существует таблица растворимости (теперь она есть и в меню левого окна).
Допустим, в лаборатории имеется раствор AgNO 3 , концентрация которого 1 моль/л. Это означает, что в 1 л такого раствора содержится 1 моль нитрата серебра.
По уравнению реакции на 1 моль AgNO 3 нужен 1 моль NaCl. Следовательно, если мы смешаем одинаковые объемы растворов AgNO 3 и NaCl одинаковой концентрации 1 моль/л, то реакция пройдет до конца и в реакционной колбе окажется только раствор нитрата натрия (NaNO 3 ) в воде, а на дно сосуда выпадет осадок хлорида серебра AgCl. При этом исходных соединений в сосуде не останется.
Но как приготовить для реакции нужный раствор NaCl ? Для этого существуют специальные мерные колбы (рис. 7-4).
Рис. 7-4. Последовательность приготовления молярного раствора хлорида натрия (1моль/л NaCl): а) берут мерную колбу емкостью 1 л; б) помещают в колбу навеску кристаллического NaCl. в) в колбу добавляют немного дистиллированной воды, растворяют кристаллы и доливают раствор водой до метки 1 л, после чего тщательно перемешивают.
Мерная колба представляет собой сосуд с тонкой шейкой, на которой по стеклу нанесена кольцеобразная метка. Если заполнить мерную колбу жидкостью до метки, то ее объем составит ровно 1 л. Возьмем такую колбу и приступим к приготовлению нужного нам раствора NaCl.
Молекулярный вес NaCl составляет (23 + 35,5) = 58,5. Следовательно, молярная масса NaCl (масса 1 моль) равна 58,5 г. Взвесим это количество NaCl на весах и поместим кристаллы в мерную колбу. Затем добавим немного воды и растворим кристаллы, покачивая колбу. Когда вся соль растворится, дольем раствор водой до метки. Мерные колбы делают таким образом, что объем раствора достигает точно 1 л, когда водный мениск (уровень воды, слегка изогнутый силами поверхностного натяжения) касается метки своей нижней частью. После этого раствор аккуратно перемешаем.
** Молярную концентрацию (или МОЛЯРНОСТЬ растворов) принято обозначать буквой М. Например, раствор концентрации 1 М содержит 1 моль вещества на литр раствора. Такой раствор называют МОЛЯРНЫМ . Раствор концентрации 0,1 М содержит 0,1 моль вещества на литр раствора и называется ДЕЦИМОЛЯРНЫМ . Растворы концентрации 0,01 М (или 0,01 моль на литр) иногда называют САНТИМОЛЯРНЫМИ .
Итак, мы приготовили раствор NaCl , концентрация которого составляет 1 моль/л, то есть одномолярный или просто молярный раствор.
Молярные концентрации в общем виде иногда обозначают следующим образом:
C NaCl = 1 моль/л
При смешивании любых равных объемов молярных растворов AgNO 3 и NaCl всегда будет получаться только раствор NaNO 3 в воде и осадок AgCl , не содержащие примеси ни одного из исходных реагентов. Отфильтровав осадок и промыв его водой, мы получим чистую соль AgCl (она в воде практически не растворяется). Упарив отфильтрованный раствор, мы получим только чистый нитрат натрия NaNO 3 . Это не удивительно, потому что смешивая равные объемы растворов, мы берем одинаковое количество молей (или частей моля) реагирующих веществ. В них содержится одинаковое количество молекул AgNO 3 и NaCl , которые реагируют между собой без остатка.
На фотографии слева показан опыт, который мы обсуждаем. Видно, как при смешивании растворов исходных солей выпадает белый осадок AgCl.
Если бы мы взяли не молярные, а, например, 10%-ные растворы AgNO 3 и NaCl (одинаковые объемы), то в них бы содержалось разное число молекул этих веществ и одна из этих солей не израсходовалась бы полностью и осталась в растворе. Какая же из двух солей оказалась бы в избытке? Та, число молей которой больше. Это будет NaCl – соль с меньшим молекулярным весом, поскольку в одинаковой массе солей число более легких молекул (и молей) NaCl оказывается б о льшим.
Каждый способ выражения концентрации раствора удобен в зависимости от цели, которую преследует химик или технолог. Процентные концентрации более удобны в технике, медицине, экологии. Молярные концентрации чаще встречаются в лабораторной практике.
Источник
Концентрация растворов. Приготовление растворов из навески соли
Министерство образования и науки Российской Федерации
Федеральное государственное бюджетное образовательное учреждение
«Новгородский государственный университет имени Ярослава Мудрого»
Институт сельского хозяйства и природных ресурсов
Отделение естественных наук и природных ресурсов
Кафедра химии и экологии
Концентрация растворов. Приготовление растворов из навески соли
Концентрация растворов. Приготовление растворов из навески соли.
Методические указания к лабораторной работе
Великий Новгород, 2011 г., 13 стр.
Растворы играют громадную роль в жизни и практической деятельности человека. Все важнейшие биологические системы (цитоплазма, кровь, лимфа, слюна и др.) являются водными растворами солей, белков, углеводов, липидов. Усвоение пищи, транспорт метаболитов, большинство биохимических реакций в живых организмах протекают в растворах. Производства, в основе которых лежат химические процессы, обычно также связаны с использованием растворов. Они применяются, например, в технологии получения полупроводниковых и проводниковых приборов, в очистке веществ, в гальванических процессах получения и очистки металлов, при травлении металлов и полупроводников и т. д. В практике находят применение как водные, так и неводные растворы.
Общие представления о растворах
Понятие «растворы» включает истинные растворы и коллоидные растворы. Различие между ними заключается прежде всего в размерах частиц и однородности систем.
Истинные растворы – это термодинамически устойчивые однофазные, однородные гомогенные системы, состоящие из двух или большего числа компонентов с размером частиц на уровне 10-10–10-9 м.
Компонентами, составляющими раствор, являются растворитель и растворенные вещества. Растворителем условно принято считать компонент, агрегатное состояние которого не изменяется при образовании раствора, и который содержится в большем количестве. Растворители могут быть жидкими или твердыми, а растворяемые вещества могут находиться в любом из трех агрегатных состояний.
Концентрации растворов и способы их выражения
Концентрация – это важнейшая характеристика любого раствора. Она определяет содержание вещества в единице массы или объема раствора (иногда растворителя).
В аналитической практике чаще всего используют следующие концентрации: массовая доля, молярная концентрация, молярная концентрация эквивалента (или нормальная концентрация), моляльная концентрация, титр раствора, молярная доля.
Обозначения физико-химических величин
Х – растворенное вещество;
m(x) — масса растворенного вещества, г;
m(р-ля) или m(H2O) или m(воды) – масса растворителя, чаще воды, г
mp или m(р-ра) – масса раствора, г;
М(х) – молярная масса вещества, г/моль;
Мэкв(х) или М(х) – молярная масса эквивалента вещества, г/моль;
Vp или V(р-ра) – объем раствора, л;
VМ – молярный объем газа, л/моль,
при нормальных условиях (н. у.) VМ(любого газа)=22,4 л/моль.
ρр или ρ(р-ра) – плотность раствора, г/мл или г/л;
ν(х) или n(х) – количество вещества, моль;
или fэкв(х) – фактор эквивалентности вещества, где
z – всегда целое положительное число – 1,2,3,4 и т. д.
νэкв(х) или ν(х) – количество вещества эквивалента, моль;
Формулы расчета некоторых физико-химических величин
1. М(х) численно равна молекулярной массе и определяется суммой атомных масс элементов, образующих вещество, с учетом числа атомов элементов (атомные массы берутся из периодической системы химических элементов ). Например,
М(Ca3(PO4)2) = 3∙Ar(Ca) + 2∙[Ar(P) + 4∙Ar(O)] = 3∙40 + 2∙[31 + 4∙16] =
= 120 + 2∙[31 + 64] =120 + 2∙95 = 120 + 190 = 310 г/моль
2. mp = Vp∙ρp или mр = m(x) + m(р-ля)
3. , для веществ в любом агрегатном состоянии
, только для газов
4. Мэкв(х) или М(х) — молярная масса эквивалента вещества (масса одного моля эквивалента вещества) — это величина, равная произведению фактора эквивалентности на молярную массу вещества.
5.
6. Эквивалент вещества – реальная или условная частица вещества, которая в данной реакции реагирует с одним атомом или ионом водорода, или одним электроном.
Фактор эквивалентности — доля реальной частицы вещества, которая эквивалентна одному иону водорода в обменных реакциях или одному электрону в окислительно-восстановительных реакциях.
z – небольшое целое число, равное числу эквивалентов вещества, содержащихся в 1 моль этого вещества.
Фактор эквивалентности определяется:
1) природой вещества,
2) конкретной химической реакцией.
а) в обменных реакциях;
Величина z фактора эквивалентности кислот определяется числом атомов водорода, которые могут быть замещены в молекуле кислоты на атомы металла.
Пример 1. Определить факторы эквивалентности для кислот: а) НСl, б) Н2SO4, в) Н3РО4; г) Н4[Fe(CN)6].
а) z(НСl ) = 1, фактор эквивалентности – 1;
б) z(Н2SO4) = 2, фактор эквивалентности — ;
в) z(Н3РО4) = 3, фактор эквивалентности — ;
г) z(Н4[Fe(CN)6]) = 4, фактор эквивалентности — .
В случае многоосновных кислот фактор эквивалентности зависит от конкретной реакции:
а) H2SO4 + 2KOH → K2SO4 + 2H2O.
в этой реакции в молекуле серной кислоты замещается два атома водорода, следовательно, z=2, фактор эквивалентности — .
б) Н2SO4 + KOH → KHSO4 + H2O.
В этом случае в молекуле серной кислоты замещается один атом водорода, z = 1, фактор эквивалентности – 1.
Для фосфорной кислоты, в зависимости от реакции, значения факторов эквивалентности могут быть: 1, ,
.
Величина z основания определяется числом гидроксидных групп, которые могут быть замещены на кислотный остаток.
Пример 2. Определить факторы эквивалентности оснований: а) КОН; б) Cu(OH)2; в) La(OH)3.
а) z(КОН) = 1, фактор эквивалентности – 1;
б) z(Cu(OH)2) = 2, фактор эквивалентности – ;
в) z(La(OH)3) = 3, фактор эквивалентности – .
Фактор эквивалентности многокислотных оснований может изменяться в зависимости от количества замещенных групп (также как и у кислот). Например, для гидроксида меди возможны значения фактора эквивалентности – 1,
а для гидроксида лантана возможны значения фактора эквивалентности – 1, ,
.
Значения факторов эквивалентности солей определяются по катиону. Величина z в случае солей равна q·n, где q – заряд катиона металла, n – число катионов в формуле соли.
Пример 3. Определить фактор эквивалентности солей: а) KNO3; б) Na3PO4; в) Cr2(SO4)3; г) Al(NO3)3.
а) z(KNO3) = q(K)·n (K)= 11 = 1, фактор эквивалентности – 1;
б) z(Na3PO4)= q(Na)·n (Na) = 1·3 = 3, фактор эквивалентности – ;
в) z(Cr2(SO4)3)= q(Cr)·n (Cr) = 3·2 = 6, фактор эквивалентности – ;
г) z(Al(NO3)3)= q(Al)·n (Al) = 3·1 = 3, фактор эквивалентности – .
Значение факторов эквивалентности для солей зависит также и от реакции, аналогично зависимости его для кислот и оснований.
б) в окислительно-восстановительных реакциях для определения факторов эквивалентности используют схему электронного баланса.
Число z для вещества в этом случае равно числу принятых или отданных электронов молекулой вещества.
К2Cr2O7 + HCl → CrCl3 + Cl2 + KCl + H2O
для прямой 2Сr+6+2∙3
→2Cr3+
реакции 2Cl— 2∙1→Cl2
для обратной 2Cr+3-2∙3→Cr+6
реакции Cl2-2→2Cl-
(K2Cr2O7) =
, (
(Cr) =
)
(HCl) =1, (
(Cl)=1)
(CrCl3) =
, (
(Cr)=
)
(Cl2) =
, (
(Cl)=1)
Способы выражения концентраций растворов
1. Массовая доля вещества в растворе – ω(х) – это величина, измеряемая отношением массы растворенного вещества m(х) к массе раствора mр:
или
.
ω(х) в % называется также процентной концентрацией и равна массе вещества в 100 г раствора.
Определение других величин, исходя из основной формулы:
или
;
или
.
2. Молярная концентрация вещества в растворе С(х) или СМ(х) или молярность – это величина, измеряемая отношением количества вещества n(х) или ν(х), содержащегося в растворе, к объему этого раствора Vр:
или
.
Например, С(х) = 1,0моль/л или 1,0М (одномолярный раствор)
С(х) = 0,1моль/л или 0,1 М (децимолярный раствор)
С(х) = 0,01моль/л или 0,01 М (сантимолярный раствор)
С(х) = 0,001моль/л или 0,001 М (миллимолярный раствор)
С(х) = 2,0моль/л или 2,0 М (двумолярный раствор)
Определение других величин, исходя из основной формулы:
.
3.Молярная концентрация эквивалента (нормальная концентрация или нормальность) С(х) или СН(х) – это величина, измеряемая отношением количества вещества эквивалента νэкв(х) или ν(
х) в растворе к объему этого раствора Vр:
.
Например: СН(х)=1,0 моль/л или 1,0н. (однонормальный раствор)
СН(х)=0,1 моль/л или 0,1н. (децинормальный раствор)
СН(х)= 0,01 моль/л или 0,1н. (сантинормальный раствор)
СН(х)= 0,001 моль/л или 0,001н. (миллинормальный раствор)
Связь нормальной концентрации с молярной концентрацией:
.
Молярная концентрация эквивалента всегда больше молярной концентрации в z раз.
4. Титр раствора Т(х) – это величина, измеряемая массой растворенного вещества в 1 мл раствора или величина, измеряемая отношением массы вещества к объему раствора.
.
5. Моляльная концентрация вещества (моляльность) Сm(х) или в(х) – это величина, измеряемая отношением количества вещества к массе растворителя.
6. Молярная (мольная) доля вещества в растворе N(х) или Х(х) – это величина, измеряемая отношением числа молей вещества в растворе к сумме числа молей вещества в растворе и числа молей растворителя.
.
Методы количественного определения СОСТАВА раствора
1. Метод денсиметрии – измерение плотности раствора ареометром.
Ареометр представляет поплавок с дробью или ртутью и узким отростком – трубкой, в которой находится шкала с делениями. Он погружается в различных жидкостях на различную глубину. При этом он вытесняет объемы этих жидкостей одной и той же массы, равной массе ареометра, а следовательно, обратно пропорциональные их плотности. То деление шкалы, до которого ареометр погружается в жидкость, показывает плотность этой жидкости.
2.Титрование — это процесс постепенного добавления титранта к анализируемой пробе до достижения точки эквивалентности. Титрант — это раствор вещества с точно известной концентрацией. Титрование — это процесс, применяемый в титриметрическом анализе. Расчет в титриметрическом анализе основан на законе эквивалентности. (Подробнее будет рассмотрен в следующей работе).
3. Физико-химические методы: фотоколориметрический, спектрофотометрический, атомно-абсорбционный, рефрактометрический, поляриметрический, потенциометрический, хроматографический, радиометрический.
Примечание. Подробно методы определения состава растворов рассмотрены в курсе аналитической химии.
СПОСОБЫ ПРИГОТОВЛЕНИЯ растворов
1. По точной навеске исходного вещества.
Рассчитывают массу навески вещества, необходимую для приготовления раствора заданной концентрации в заданном объеме раствора. Массу навески вещества, взятую на аналитических весах с точностью 0,0002 г, количественно (полностью) переносят в мерную колбу заданной вместимости, растворяют в небольшом объёме воды, доводят до метки дистиллированной водой.
2. Разбавлением заранее приготовленного раствора с известной концентрацией.
Рассчитывают массу вещества в разбавленном растворе, затем массу и объем
концентрированного раствора, содержащего данную массу вещества. Мерной пипеткой отбирают рассчитанный объем концентрированного раствора, переносят в мерную колбу и разбавляют дистиллированной водой до требуемого объёма.
Фиксанал — запаянная ампула, в которой находится точно известное количество вещества или раствора (0,1н.).
Содержимое ампулы количественно переводят в мерную колбу заданного объема, разбивая ампулу о вложенный в воронку боек, вторым бойком разбивают верхнее углубление ампулы, с помощью промывалки через отверстие тщательно промывают ампулу. Для промывки рекомендуется не менее, чем 6-кратный объем воды (по сравнению с вместимостью ампулы). Раствор доводят до метки дистиллированной водой и перемешивают. Из фиксанала готовят как стандартные, так и рабочие растворы. Это быстрый и достаточно точный способ приготовления титрованных растворов, т. е. растворов с точно известной концентрацией.
Приготовление раствора с заданной массовой долей из навески соли.
Приборы и реактивы: мерная колба на 50 мл, ареометр. Навеска соли.
Цель работы: научиться готовить раствор с заданной концентрацией из навески соли. Овладеть методикой денсиметрии.
1) приготовить раствор из навески соли;
2) измерить плотность приготовленного раствора.
При выполнении лабораторной работы необходимо соблюдать общие правила техники безопасности для химических лабораторий. С растворами кислот и щелочей обращаться осторожно, при попадании их на руки или одежду следует смыть сразу же большим количеством воды. Осколки стекла убирать либо щеткой, либо тряпочкой или салфеткой.
Получив у преподавателя задание на выполнение опыта, рассчитайте, сколько соли и воды потребуется для приготовления раствора заданной концентрации общим объемом 50 мл.
Необходимое количество соли перенесите в мерную колбу. Небольшими порциями вливайте воду в колбу при постоянном перемешивании. После растворения соли доведите раствор до метки.
Полученный раствор перелейте в цилиндр (на 50 мл) и ареометром измерьте его плотность.
Оформление опыта в рабочей тетради
1) Название опыта
2) Исходные данные
3) Расчет массы соли
4) Значение плотности приготовленного раствора, ρпракт.
5) Расчет погрешности эксперимента.
(абсолютная погрешность)
(относительная погрешность)
6) Используя величину плотности раствора – и
(%), вычислите молярную, нормальную, моляльную концентрации полученного раствора, а также его титр и мольную долю соли в растворе. Должны быть приведены полные расчеты: с названиями концентраций, формулами для расчета концентраций, значениями, используемых для расчета величин и указанием единиц измерения (размерности).Полученные результаты представьте в виде таблицы 2.
Источник