Лимонная вода для детей как приготовить

Содержание
  1. Что нельзя делать при выпадении волос
  2. Какие ошибки мы совершаем, столкнувшись с выпадением волос
  3. При выпадении волос нельзя паниковать
  4. Нельзя мыть голову редко
  5. Нельзя ограничивать расчесывание волос, «накапливать» выпадающие волосы
  6. Нельзя находиться на солнце без головного убора
  7. Нельзя собирать и подсчитывать выпавшие волосы
  8. Нельзя втирать масла в кожу головы
  9. Нельзя сидеть на гипокалорийной и безбелковой диете
  10. Нельзя отменять оральные контрацептивы
  11. Нельзя лечить волосы иммуностимуляторами и противогельминтнами препаратами
  12. Нельзя самостоятельно начинать и отменять препараты с миноксидилом
  13. Мочегонные препараты и снижение веса
  14. Что такое мочегонные препараты?
  15. Что за собой влечет применение мочегонных препаратов?
  16. Эффективность мочегонных препаратов против избыточного веса
  17. Как еще можно наладить водный баланс в организме
  18. Питьевая щелочная вода — насколько благотворно ее влияние на организм? Обзор литературы
  19. Материалы и методы исследования
  20. Результаты и обсуждения
  21. Выводы

Что нельзя делать при выпадении волос

10 “нельзя” или что не рекомендуется делать при выпадении волос

Волосы у человека давно уже утратили свою биологическую целесообразность – они не защищают нас от холода и ветра, других негативных факторов. Единственная функция, которую продолжает осуществлять волосяной покров, – это эстетическая.

Волосы представляют и для мужчин, и для женщин, огромную психологическую ценность, а их потеря становится для большинства тяжелой эмоциональной трагедией. Необходимо хорошо представлять, что запрещено делать при выпадении волос, ведь неправильное поведение в этот момент может повлиять на течение процесса потери волос и привести к его усугублению.

Какие ошибки мы совершаем, столкнувшись с выпадением волос

При выпадении волос нельзя паниковать

Всем известна тесная взаимосвязь процесса выпадения волос и состояния психо-эмоционального фона. Ведь стресс является фактором-причиной выпадения, а может и затягивать выпадение, вызванное другими факторами. Перспектива грядущего облысения – одна из основных причин, способствующих появлению невроза, особенно у женщин, от природы обладающих густым волосами. Чем дольше протекает выпадение, тем больше становится страх потерять «последние» волосы и возрастает акцентуация на факте выпадения. Необходимо понять, что сильные и внезапные формы выпадения волос чаще всего являются наиболее благоприятными, чаще всего они имеют четкую связь с перенесенной температурой, заболеванием, лекарством и т.д., и в большинстве случаев проходят даже сами по себе.

Нельзя мыть голову редко

Мытье головы является важной мерой ухода за волосами, особенно в период активного выпадения волос. Ограничение кратности мытья, особенно боязнь мытья головы, нежелательна не только с психологической точки зрения, но и с точки зрения здоровья. Сальный секрет, накапливающийся на поверхности головы при редком мытье, может являться причиной воспаления кожи и усугубления выпадения волос. Наоборот, трихологи рекомендуют в периоды активного выпадения усиливать очищение кожи – использовать активные медицинские шампуни, регулирующие сальность, и пилинги, эксфолианты.

Нельзя ограничивать расчесывание волос, «накапливать» выпадающие волосы

Стадия выпадения волоса длится 3 месяца – это период от прекращения роста волоса до того момента, как волос покидает кожу головы. Если волосы не вычесывать вовремя, то мертвый волос механически будет препятствовать росту «нового» волоса, растущего вместо него.

Нельзя находиться на солнце без головного убора

Доказана роль негативного влияния ультрафиолета на потерю волос. Чем интенсивнее выпадение, чем более редкими волосы становятся, тем больше будет прогрессия процесса потери волос.

Нельзя собирать и подсчитывать выпавшие волосы

По статистике трихологов, собирание и подсчет волос, которые покинули голову, обладает только негативным эффектом на течение выпадения волос. Собирание волос способствует акцентуации женщин на процессе потери волос, невротизирует, а ни в коем случае не позволяет понять, насколько выпадение превышает суточную норму.

Нельзя втирать масла в кожу головы

Кожа головы относится к зоне с очень высокой секрецией кожного сала. Дополнительное нанесение жирных средств, особенно масел, которые обладают комедоногенным действием, может способствовать появлению воспаления, перхоти и болезненности кожи и усугубить выпадения.

Нельзя сидеть на гипокалорийной и безбелковой диете

Клетки волосяного фолликула относятся к одним из наиболее интенсивно делящихся клеток человеческого организма, именно поэтому им требуется большое количество энергии для нормального метаболизма. Считается, что калорийность пищевого рациона менее 1200 ккал может приводить к выпадению волос. Что касается белка, это основной структурный элемент стержня волоса (белок кератин), поэтому в пищевом рационе обязательно должны присутствовать все незаменимые аминокислоты.

Нельзя отменять оральные контрацептивы

Многие из существующих оральных контрацептивов обладают положительным влиянием на рост волос, поскольку содержать женские гормоны эстрогены, а в ряде случаев снижают и мужские. Отменять «подпитывающие» фолликул препараты не целесообразно в момент выпадения, когда клетки волоса и так слишком чувствительны ко всем неблагоприятным факторам.

Нельзя лечить волосы иммуностимуляторами и противогельминтнами препаратами

По старинке, часть врачей связывают выпадение волос со сниженным иммунитетом или глистной инвазией, назначая соответствующие препараты для «лечения» потери волос. На самом деле большинство иммуностимуляторов и антигельминтных лекарств, наоборот, являются «виновниками» выпадения.

Нельзя самостоятельно начинать и отменять препараты с миноксидилом

Миноксидил – единственный препарат для наружного применения, который имеет высокую степень эффективности при поредении волос. В России он находится в свободной продаже и часто начинает применяться самостоятельно, по рекомендации фармацевта или консультанта в интернете. Тем не менее, миноксидил – препарат для постоянного применения, который обладает «синдромом отмены», может вызывать нежелательные явления и дает усиления в начале применения. Именно поэтому при острых, доброкачественных формах выпадения, при диффузном выпадении он может только навредить.

Не стоит отчаиваться, столкнувшись с выпадением волос. Чаще всего, это временное явление, которое не принесет непоправимых последствий. Помните, что если выпадение волос продолжается до 3 месяцев, волосы покидают голову со всей поверхности, – это острое выпадение, которое при правильном уходе пройдет даже само по себе.

Источник

Мочегонные препараты и снижение веса

Как же хочется убрать лишние килограммы быстро! И кажется логичным принять мочегонную таблетку и «слить» 1,5-2 кг за пару дней! И многие делают так, особенно в преддверии какого-то важного события или открытия пляжного сезона.

Но, давайте, разберемся, так ли все просто.

Что такое мочегонные препараты?

Мочегонные препараты являются лекарствами и применять их без прямого назначения не следует.

Мочегонные препараты (диуретики) – настоящие лекарственные препараты. У них есть четко обозначенные, подтвержденные большими исследованиями показания. Они помогают лечить сердечную недостаточность, артериальную гипертонию, болезни почек, некоторые заболевания легких. Назначение диуретиков порой спасает жизнь.

Человеку с лишним весом врачом могут быть назначены препараты этой группы, если для этого есть медицинские показания – заболевания сердца, почек. В первые дни приема будет и желаемое снижение веса за счет удаления избыточной жидкости. Ключевое слово «избыточной».

Принцип работы мочегонных препаратов – увеличение выведения жидкости через почки, стимуляция их работы. По точке приложения диуретики разделяются на классы: петлевые, калийсберегающие, тиазидные, ингибиторы карбоангидразы, осмотические.

Что за собой влечет применение мочегонных препаратов?

Ни в одном руководстве к их использованию нет такого показания к применению, как «снижение веса». При этом есть перечень побочных действий и противопоказаний, связанных с потерей как жидкости, так и солей (калия, магния, натрия).

Бесконтрольный прием диуретиков опасен осложнениями:

  • головная боль;
  • головокружение;
  • тошнота и рвота;
  • судороги;
  • сердцебиение;
  • боли в мышцах;
  • жажда.

Описаны даже смертельные исходы при непродуманном использовании препаратов этой группы.

Несмотря на то, что человек на 2-3 состоит из воды, считать ее лишней в большинстве случаев нельзя и пытаться «выгнать» в погоне за быстрым изменением цифры на весах особенно.

Подводя итог: все лекарственные формы мочегонных препаратов должны приниматься строго по назначению врача!

Если есть объективная причина снижать массу тела (а мочегонные часто используют пациенты с анорексией – без необходимости терять вес), то целью будет потеря жировой ткани. А любой «водувыводящий» метод никак не затронет эту самую ткань.

Эффективность мочегонных препаратов против избыточного веса

После приема мочегонных препаратов вес, действительно, уменьшается довольно быстро. Но также быстро возвращается снова.

Длительный прием препаратов этой группы без медицинских показаний чреват тяжелыми осложнениями. И никакое платье, в которое непременно нужно поместиться завтра, не стоит здоровья.

Волшебной таблеткой для стойкого снижения веса могут быть только адекватное питание и регулярная физическая нагрузка.

Лучшее лекарство против избытка веса — регулярные физические упражнения.

Что же делать, если признаки задержки жидкости все-таки есть: небольшая отечность кистей, лодыжек, становятся тесными к вечеру привычные туфли?

Такие явления часто встречаются в жаркую погоду, после соленой пищи, в предменструальный период.

Есть несколько естественных способов уменьшить количество жидкости в организме:

  • Снизить потребление соли до 5-6г в день. Это значит, исключить сильносоленые продукты и блюда: колбасу, полуфабрикаты, готовые соусы, зрелые сыры, деликатесы, консервы, чипсы, маринованные и соленые овощи.
  • Обеспечить достаточное количество белка в рационе. Белки в организме играют важную роль в обеспечении водного равновесия. В среднем, 1г белка на 1 кг веса в день – это включение белкового продукта в каждый основной прием пищи.
  • Включать продукты, богатые калием и магнием. Эти микроэлементы предупреждают задержку воды. Фрукты, овощи, орехи и семечки, отруби – основные источники К и Mg.
  • Адекватный питьевой режим – не меньше 6-8 стаканов в день. При дефиците питья возникает парадоксальная задержка жидкости, включается механизм защиты от обезвоживания и вода не выводится.
  • Не увлекаться простыми углеводами (сладости, доступные крахмалы) – если на энергетические цели потрачены не все съеденные углеводы, они откладываются в печени и мышцах в виде гликогена. А каждый его грамм связан с 3 г воды. Конечно, количество запасов гликогена ограничено 600-800г, но это уже 2-2,5 л воды.
  • Физические нагрузки, ходьба, тренировки – не только использую запас гликогена (уменьшая при этом количество связанной с ним жидкости), но и улучшают кровоток и выведение воды почками.
Читайте также:  Как приготовить лавровый лист для выкидыша рецепт

Чтобы не допустить накопления лишней жидкости полезно включать в диету продукты, обладающие мягким мочегонным действием. В основном он связан c солями калия, а также с другими, специфичными для каждого, компонентами, относящимся к полифенолам, антоцианам.

Употребление каких продуктов станет профилактикой нежелательных отеков:

  • все виды капусты;
  • бахчевые – дыни и арбузы;
  • свежие огурцы;
  • зелень петрушки, укропа, кинзы, сельдерея;
  • клюква и брусника;
  • лимон и имбирь;
  • свекла, спаржа и чеснок.

Многие натуральные продукты можно использовать для регулировки водного баланса в организме, хотя у здорового человека организм с этим справляется самостоятельно.

Как еще можно наладить водный баланс в организме

Конечно, быстрого и заметного мочегонного эффекта при употреблении в разумных количествах они не окажут, это не лекарства. Но свой вклад в сохранение водного баланса внесут. А ломтики огурца и листья капусты можно даже прикладывать к проблемным отечным зонам — голени и нижним векам.

Относительно безопасно с мочегонной целью можно использовать различные травяные сборы. Они могут быть собраны самостоятельно или приобретены готовыми в аптеке. Научных доказательств их эффективности нет и работать они могут неодинаково у разных людей.

Мочегонным эффектом обладают:

  • укроп – семена, листья, стебли;
  • петрушка – листья и корни;
  • ромашка – цветки;
  • толокнянка – листья;
  • брусника – ягоды и листья;
  • хвощ полевой;
  • крапива;
  • череда.
  • бссмертник – и много других.

Но даже в случае растительных препаратов нужно соблюдать рекомендованную дозировку, пропорции и принимать курсом не более 5-7 дней подряд.

Если все домашние средства испробованы, а отечность сохраняется или сопровождается другими симптомами (одышка, частое мочеиспускание и др.) – обязательно обратитесь к врачу, чтобы не пропустить более серьезную причину задержки жидкости.

Источник

Питьевая щелочная вода — насколько благотворно ее влияние на организм? Обзор литературы

В статье изложен обзор литературы по изучению влияния щелочной воды на организм человека, а также приводятся рекомендации по употреблению для максимального сохранения ее действия. Отмечено, что употребление щелочной воды может быть дополнительной антиокси

The article presents a review of the literature on the study of the influence of alkaline water on the organism, and also recommendations for use to maximize the preservation of its action. It is highlighted that the use of alkaline water can be an additional antioxidant support which favorably influences on state of health in diabetes and hyperlipidemia, and can improve blood rheology when it is disturbed due to intense physical exertion.

В последнее время появилось множество публикаций на тему питания, которое помогает живому организму поддерживать кислотно-щелочное равновесие, не позволяя ему сдвигаться в кислую сторону [1, 2]. Такое питание включает в себя как рацион, насыщенный овощами и фруктами, так и употребление щелочной воды.

Кислотно-щелочной баланс внутренней среды организма поддерживается в достаточно жестких границах на уровне pH артериальной крови от 7,26 до 7,45 буферными системами организма [3], и принято считать, что он изменяется только при тяжелых заболеваниях. Однако анализ кислотно-щелочного равновесия крови, как правило, проводился у пациентов с выраженной патологией и мало изучался у практически здоровых людей, подверженных негативному влиянию экологии, стрессам, изменению в питании и проч. В настоящее время отрабатываются более чувствительные методы и модели, которые, возможно, помогут понять более тонкие, но весьма существенные для здоровья колебания pH [4, 5].

Есть исследование, убедительно доказывающее, что не только тяжелые состояния здоровья, но и условия работы в современной промышленности достоверно сдвигают традиционные показатели буферной системы крови (pH, РаCO2, РаO2 крови и HCO в плазме) у рабочих завода по производству пластмасс [6]. О более тонких изменениях кислотно-щелочного равновесия в связи с эволюцией питания людей в историческом разрезе изложено также в European Journal of Nutrition в 2001 г. [7]. Там же указано, что «во время высокоинтенсивной активности ацидоз ответственен за усталость и истощение рабочих мышц. Введение бикарбонатной добавки перед тренировкой улучшало показатели, задерживая начало усталости». Кислотно-щелочное равновесие зависит от питания перед высокоинтенсивной тренировкой. Низкое употребление углеводов перед тренировкой приводит после интенсивной нагрузки к его сдвигу в кислую сторону [8, 9]. Определение кислотно-щелочного равновесия по показателям мочи (pH, бикарбонаты, мочевина) также может показать баланс кислот и оснований в организме. Таким методом было выявлено негативное влияние западного стиля питания с большим количеством белка на изменение показателей мочи в кислую сторону [10]. Есть и другие работы, доказывающие влияние питания на кислотно-щелочной баланс как у людей, так и у животных, где подчеркивается, что несбалансированный рацион меняет кислотно-щелочное равновесие в кислую сторону [11–13].

Таким образом, роль питания в поддержании кислотно-щелочного баланса подтверждена и продолжает изучаться, и немалую долю в рационе составляет вода, оказывающая значимое влияние на здоровье наряду с пищей. В литературе накопилось немало данных о благоприятном воздействии на здоровье употребления питьевой щелочной воды, являющейся основой для коррекции кислотно-щелочного равновесия на фоне привычного для человека питания. Изучалось ее влияние на общее оздоровление, уровень глюкозы в крови, массу тела, восстановление спортсменов после напряженных тренировок и проч., что будет отдельно рассмотрено ниже.

Материалы и методы исследования

Были проанализированы рандомизированные клинические исследования, а также группы нерандомизированных исследований.

Результаты и обсуждения

Питьевая вода во всех странах регулируется по показателю pH, однако допустимый диапазон колебаний достаточно широкий. В Российской Федерации допустимыми параметрами для питьевой воды является pH в диапазоне 6–9 [14], охватывая диапазон от слабокислой до щелочной реакции. Питьевая вода с водородным показателем 8–9 является щелочной, находясь в нормируемых параметрах для ежедневного потребления.

Одним из самых спорных вопросов, возникающих при рассмотрении пользы питьевой щелочной воды, является сомнение в том, что она может полностью нейтрализоваться кислой средой желудка. Действительно, на первый взгляд этот вопрос очевиден, и есть предположение, что щелочная среда будет полностью инактивирована желудочным соком, потеряв свои полезные свойства. Однако ответ на этот вопрос не так прост, и было бы неправильно его рассматривать, опираясь только на физико-химические свойства двух сред, упуская из виду некоторые особенности эвакуации желудочного содержимого. Этот вопрос очень внимательно был рассмотрен некоторыми исследователями, так как в медицине всегда достаточно остро стоит вопрос, как избежать инактивации отдельных медицинских препаратов и снизить время их контакта с кислым содержимым желудка. Этот вопрос по отношению к щелочной воде в данном обзоре будет рассмотрен впервые.

Для понимания степени и времени контакта щелочной воды с кислотностью желудка необходимо рассмотреть особенности эвакуации жидкости и пищи из желудка. Методы изучения особенности эвакуации содержимого желудка включают методы взятия проб желудочно-кишечного тракта [15–18], сцинтиграфию [19, 20], фармакокинетический анализ маркерных веществ [21] и магнитно-резонансную томографию (МРТ) [22, 23].

Впервые механизм намного более быстрой эвакуации воды по сравнению с пищей был описан и изучен в 1908 г. Г. В. Вальдейером, который описал анатомическую структуру складок слизистой на малой кривизне желудка (рис.), выступающей в качестве пути для быстрой эвакуации жидкости [24], назвав ее «Magenstrasse» — желудочной дорожкой. Кстати, именно этот известнейший гистолог и анатом ввел термины «нейрон» и «хромосома».

Впоследствии феномен Вальдейера был неоднократно описан другими авторами [25, 26] и в 70-х годах прошлого столетия был окончательно подтвержден [27, 28]. В 2007 и 2015 гг. феномен быстрой эвакуации воды (в течение 10 мин) из желудка был подтвержден с помощью математических моделей [29, 30].

В 2017 г. группа немецких ученых опубликовала работу, где с помощью МРТ изучался механизм эвакуации воды, выпитой как натощак, так и после приема пищи, причем в данной работе исследовались различные виды пищи (твердость, калорийность, жирность) [31]. Несмотря на высокую вариабельность времени эвакуации воды у испытуемых, подтверждено, что большая часть воды не смешивается с химусом и эвакуируется значительно быстрее пищи. Более всего задерживает эвакуацию гомогенная нежирная пища, с которой происходит смешивание жидкости в желудке.

На скорость эвакуации воды влияет также ее температура — прохладные напитки (5–20 °C) проходят из желудка в двенадцатиперстную кишку быстрее, чем теплые (25–40 °C) [32, 33]. Следует отметить, что все исследования проводились на объемах 250–350 мл, то есть эвакуаторная функция желудка при употреблении больших объемов пищи не изучалась, вода также выпивалась в количестве 250 мл.

Несмотря на то, что вопрос особенностей эвакуации воды из желудка был достаточно хорошо изучен и подтвержден, он известен только определенному кругу исследователей и широко не обсуждается в кругах практических врачей. Хотя именно этот феномен помог бы понять механизм всасывания и расщепления некоторых лекарств и жидкостей, долгое соприкосновение которых с кислой средой желудка было бы нежелательно.

Ознакомление с феноменом Вальдейера дает понимание того, что значительная часть щелочной воды в желудке после ее употребления будет эвакуироваться в двенадцатиперстную кишку достаточно быстро по складкам малой кривизны и не будет соприкасаться с кислой средой желудочного сока, сосредоточенного в антральном отделе. Особенно быстро этот процесс происходит при пустом желудке. Другими словами, кислотность желудочного сока не влияет на сохранение щелочности жидкости. В качестве рекомендаций для максимального сохранения щелочной среды самым оптимальным будет режим, когда щелочная вода будет выпита натощак или между приемами пищи.

Воздействие на организм человека щелочной воды, полученной электролизом, изучалось отдельными авторами как в моделях на животных, так и у людей. Общеоздоровительный эффект от постоянного употребления такой воды рассматривался, в частности, с точки зрения воздействия на окислительные процессы, вызывающие обширное повреждение биологических макромолекул и ведущие к различным заболеваниям, старению и мутациям. В частности, были рассмотрены механизмы защиты от окисления и повреждения РНК, ДНК и белков как in vitro [34–37], так и in vivo у лабораторных крыс [38]. Предполагалось, что щелочная вода является идеальным поглотителем активного кислорода, являющегося одним из мощных повреждающих факторов в живых системах. Результаты исследований подтвердили данный тезис. Все эти исследования установили, что щелочная вода имела тенденцию подавлять одноцепочечный разрыв ДНК, РНК и защищать белок от воздействия окислительного стресса. Доказано также, что щелочная вода повышает активность ключевого детоксифицирующего фермента в организме, супероксиддисмутазы, который является основной защитой от повреждения свободными радикалами [34, 35].

Читайте также:  Как приготовить суп уху с рисом

Вода с щелочным диапазоном (pH 8,5–9,5) хорошо продемонстрировала свое антиоксидантное действие у пациентов, находящихся на диализе. K. C. Huang и соавт. изучили активные формы кислорода в плазме этих пациентов и обнаружили, что такая вода снижает уровень пероксида, повышенный гемодиализом, и минимизирует маркеры воспаления (С-реактивный белок и интерлейкин-6) после 1 месяца употребления. Эти данные показывают, что сердечно-сосудистые осложнения (инсульт и сердечный приступ) у пациентов, находящихся на гемодиализе, могут быть предотвращены или отсрочены с помощью такого безобидного питья [39]. Причем по активности и результатам анализов употребление щелочной воды у этой группы пациентов сравнимо с действием инъекционного витамина С, но, в отличие от последнего, без риска образования оксалатов [40]. В этой же статье отмечено, что шестимесячный прием щелочной воды увеличил гематокрит и уменьшил количество цитокинов, обеспечивающих мобилизацию воспалительного ответа.

Известно, что именно свободнорадикальное окисление приводит к развитию многих возрастных болезней, поэтому антиоксиданты могут быть полезными для смягчения разрушительного действия старения и, возможно, для его замедления. G. Fernandes из Университета Техаса сообщил, что различные виды лабораторных мышей, получавших щелочную воду с рождения, живут на 20–50% дольше контрольной группы, употреблявшей водопроводную воду. Он также обнаружил снижение уровня пероксида в сыворотке опытных мышей по сравнению с контрольными [41]. Исследование, проведенное на нематодах, у которых в качестве водной среды использовалась щелочная вода, показало, что она значительно продлила продолжительность жизни червей, что было интерпретировано как проявление поглощающего действия активных форм кислорода [42].

Оздоровительный эффект при приеме щелочной воды зарегистрирован и описан у людей в исследовании Н. В. Воробьевой (МГУ им. М. В. Ломоносова) при изучении микрофлоры кишечника. Отмечалась стимуляция роста нормальной анаэробной флоры. Положительное воздействие трактовалось автором как улучшение среды обитания и благоприятного микроэкологического фона для роста аутомикро­флоры [43].

Исследование, проведенное в Китае в 2001 г. с людьми, продемонстрировало, что прием щелочной воды на протяжении от 3 до 6 месяцев снижал вплоть до нормальных значений гиперлипидемию, уровень глюкозы крови при сахарном диабете 2 типа легкой степени и регулировал уровень артериального давления [44]. Аналогичные результаты с регуляцией сахара крови были получены и в других исследованиях. Другое исследование 2006 г., проведенное на лабораторных крысах с экспериментальным диабетом, подтвердило данные результаты [45]. Через 12 недель употребления щелочной воды снижались уровни холестерина, триглицеридов и сахара в крови.

Поскольку сахарный диабет 2 типа является достаточно актуальной проблемой в современном обществе, ему уделяется много внимания различными исследователеми. Интересные результаты были получены на людях, больных диабетом 2 типа, которые были разбиты на группы и получали воду с различным pH (7,0; 8,0; 9,5 и 11,5) в течение 14 дней. Было обнаружено, что сахароснижающее свойство проявляет вода с pH 9,5 и 11,5, тогда как более низкие значения не оказывают статистически достоверного влияния на глюкозу в крови [46]. Авторы также отмечают, что наряду с сахароснижающим эффектом щелочная вода проявляет выраженное антиоксидантное действие, которое необходимо больным сахарным диабетом, а также выраженный детоксикационный эффект, проявляющийся в учащенном мочеиспускании. Корейское исследование, проведенное на мышах с диабетом, подтвердило, что питье щелочной воды значительно снижало концентрацию глюкозы в крови и улучшало толерантность к глюкозе [47]. Однако не было выявлено воздействия на уровень инсулина. Еще два исследования подтвердили не только способствование снижению глюкозы в крови и нормализации толерантности к глюкозе, но и лучшее сохранение β-клеток поджелудочной железы, активно разрушающихся при прогрессировании данного заболевания [48, 49].

Исследования, посвященные действию щелочной воды на организм, были также проведены среди спортсменов и среди людей, получавших интенсивные физические нагрузки. Предполагается, что интенсивные физические нагрузки провоцируют окислительный стресс в организме [50]. Дегидратация после тренировок также провоцирует повышение уровня малонового альдегида, являющегося одним из маркеров окислительного стресса [51]. К окислению весьма чувствительны эритроциты. Насыщенный железом гемоглобин разлагается, выделяя супероксид [49, 52]. Когда активные формы кислорода инициируют перекисное окисление липидных мембран, белки клеточных мембран часто становятся сшитыми, а эритроциты становятся более жесткими с меньшей подвижностью [53]. Эти механизмы изменяют свойства эритроцитов, в том числе снижают текучесть крови и повышают агрегацию ее клеток, что приводит к увеличению вязкости крови и нарушению кровотока [54]. Аналогичные изменения под действием окислителей происходят и с тромбоцитами [55]. Агрегацию тромбоцитов усиливает и финибриноген, испытывающий действие окислительного стресса [56]. Поэтому одним из показателей выраженного окислительного стресса у спортсменов можно рассматривать повышение вязкости крови, которую усугубляет дегидратация после интенсивных тренировок.

Быстрое восстановление после интенсивных физических нагрузок является актуальной проблемой в спортивной медицине. J. Weidman и соавт. провели двойное слепое рандомизированное исследование для сравнения эффективности регидратации после тренировок с применением стандартной питьевой и щелочной воды (pH 9,5), полученной электролизом, в котором изучали показатели вязкости крови [57]. В этом исследовании была обнаружена значительная разница в вязкости цельной крови при оценке употребления воды с высоким pH по сравнению со стандартной очищенной водой во время фазы восстановления (120 мин) после интенсивной дегидратации, вызванной физической нагрузкой. Авторы объясняют полученные результаты нейтрализацией окислительных процессов, выявленных после интенсивных физических нагрузок в организме спортсменов. Исследование, проведенное с тремя видами воды: минеральной (pH 6,1), щелочной с низким содержанием минералов (pH 8) и обычной питьевой водой, также выявило лучшую регидратацию после высокоинтенсивных интервальных тренировок с улучшением утилизации лактата при употреблении после нагрузок щелочной воды с низким содержанием минералов [58].

В другом исследовании D. P. Heil продемонстрировал более быструю и лучшую регидратацию с бутылочной щелочной водой (pH 10), чем со стандартной питьевой водой у десяти велосипедистов мужского пола. Маркерами регидратации были удельный вес мочи, диурез, концентрация сывороточного белка и восстановление водного баланса [59]. Бикарбонатная бутылочная щелочная вода с микроэлементами (pH 9,1) показала также лучшие восстановительные свойства по сравнению с питьевой водой и у спортсменов боевых искусств после ограничения воды для быстрой потери веса перед соревнованиями [60]. Перечисленные исследования демонстрируют, что лучшие восстановительные свойства показывает вода со щелочным pH по сравнению с нейтральной питьевой водой, независимо от того, получена она электролизом или это бутылочный вариант.

Выводы

Таким образом, вода с pH 9–10 может рассматриваться как дополнительный фактор оздоровления. Растущий объем научных исследований не выявил негативных отрицательных воздействий на организм. Из рассмотренных публикаций очевидно, что употребление щелочной воды может быть дополнительной антиоксидантной поддержкой, благоприятно сказывается на состоянии здоровья при диабете и гиперлипидемии и может улучшать реологию крови в случае, когда она нарушена из-за интенсивных физических нагрузок. Применение щелочной воды в спорте для более активного восстановления после тренировок может дать дополнительный безопасный инструмент сохранения здоровья спортсменов.

Литературные данные, приведенные в обзоре, также могут помочь выработать рекомендации по приему щелочной воды для максимального сохранения ее полезных свойств. Особенности эвакуаторной функции желудка при употреблении пищи объемом до 250 мл позволяют большей ее части не смешиваться с его содержимым. Однако это касается не всего объема выпитой воды. Часть ее все-таки смешивается, особенно если пища является гомогенной и полужидкой. Наиболее полно сохранение свойств с наибольшей вероятностью произойдет при употреблении щелочной воды натощак или между приемами пищи. Следует также принимать во внимание, что исследования касались объема жидкости до 250 мл. Каким образом эвакуируются из желудка большие объемы воды, на сегодняшний день остается не изученным.

В заключение следует отметить, что сохраняется высокая актуальность исследований воздействия щелочной воды на здоровье, поскольку есть перспективы дополнительного безопасного алиментарного фактора питания, благотворно влияющего на организм и доступного для широких кругов населения.

Литература

  1. Riond J. L. Animal nutrition and acid-base balance // Eur J Nutr. 2001. № 40 (5). P. 245–254.
  2. Gannon R. H., Millward D. J., Brown J. E. et al. Estimates of daily net endogenous acid production in the elderly UK population: analysis of the National Diet and Nutrition Survey (NDNS) of British adults aged 65 years and over // Br J Nutr. 2008, Sep; 100 (3): 615–623.
  3. Adrogué H. E., Adrogué H. J. Acid-base physiology // Respir Care. 2001. Apr; 46 (4). Р. 328–341.
  4. Adrogué H. J., Madias N. E. Assessing Acid-Base Status: Physiologic Versus Physicochemical Approach // Kidney Dis. 2016. Nov; 68 (5). Р. 793–802.
  5. Todorovic J., Nešovic-Ostojic J., Milovanovic A. et al. The assessment of acid-base analysis: comparison of the «traditional» and the «modern» approaches // Med Glas (Zenica). 2015. Feb; 12 (1). Р. 7–18.
  6. Prakova G. Monitoring of acid-base status of workers at a methyl methacrylate and polymethyl methacrylate production plant in Bulgaria // RAIHA J (Fairfax, Va). 2003. Jan-Feb; 64 (1). Р. 11–16.
  7. Manz F. History of nutrition and acid-base physiology // Eur J Nutr. 2001. Oct; 40 (5). P. 189–199.
  8. Greenhaff P. L., Gleeson M., Maughan R. J. The effects of dietary manipulation on blood acid-base status and the performance of high intensity exercise // Eur J Appl Physiol Occup Physiol. 1987. 56 (3). Р. 331–337.
  9. Greenhaff P. L., Gleeson M., Whiting P. H. et al. Dietary composition and acid-base status: limiting factors in the performance of maximal exercise in man? // Eur J Appl Physiol Occup Physiol. 1987. 56 (4). Р. 444–450.
  10. Remer T. Influence of nutrition on acid-base balance — metabolic aspects // Eur J Nutr. 2001. Oct; 40 (5). Р. 214–220.
  11. Remer T. Influence of diet on acid-base balance // Semin Dial. 2000, Jul-Aug; 13 (4): 221–226.
  12. Riond J. L. Animal nutrition and acid-base balance // Eur J Nutr. 2001 Oct; 40 (5): 245–254.
  13. Akter S., Eguchi M., Kurotani K. High dietary acid load is associated with increased prevalence of hypertension: the Furukawa Nutrition and Health Study // Nutrition. 2015 Feb; 31 (2): 298–303.
  14. СанПиН 2.1.4.10749–01 «Питьевая вода. Гигиенические требования к качеству воды».
  15. Malagelada J. R., Longstreth G. F., Summerskill W. H. et al. Measurement of Gastric Functions during Digestion of Ordinary Solid Meals in Man // Gastroenterology. 1976, 70 (2), 203–210.
  16. Hens B., Corsetti M., Brouwers J. et al. Gastrointestinal and Systemic Monitoring of Posaconazole in Humans After Fasted and Fed State Administration of a Solid Dispersion // J. Pharm. Sci. 2016, 105 (9), 2904–2912.
  17. Hunt J. N., Macdonald I. The Influence of Volume on Gastric Emptying // J. Physiol. 1954, 126 (3), 459–474.
  18. Rubbens J., Brouwers J., Wolfs K. et al. Ethanol Concentrations in the Human Gastrointestinal Tract after Intake of Alcoholic Beverages // Eur. J. Pharm. Sci. 2016, 86, 91–95.
  19. Feinle C., Kunz P., Boesiger P. et al. Scintigraphic Validation of a Magnetic Resonance Imaging Method to Study Gastric Emptying of a Solid Meal in Humans // Gut. 1999, 44 (1), 106–111.
  20. Coupe A. J., Davis S. S., Evans D. F. et al. Do Pellet Formulations Empty from the Stomach with Food? // Int. J. Pharm. 1993, 92 (1), 167–175.
  21. Heading R. C., Nimmo J., Prescott L. F. et al. The Dependence of Paracetamol Absorption on the Rate of Gastric Emptying // Br. J. Pharmacol. 1973, 47 (2), 415–421.
  22. Koziolek M., Grimm M., Garbacz G. et al. Intragastric Volume Changes after Intake of a High-Caloric, HighFat Standard Breakfast in Healthy Human Subjects Investigated by MRI // Mol. Pharmaceutics. 2014, 11 (5), 1632–1639.
  23. Mudie D. M., Murray K., Hoad, C. L. et al. Quantification of Gastrointestinal Liquid Volumes and Distribution Following a 240 mL Dose of Water in the Fasted State // Mol. Pharmaceutics. 2014, 11 (9), 3039–3047.
  24. Waldeyer H. W. Die Magenstraße. Sitzungsberichte der Koniglich — Preussischen Akademie der Wissenschaften; Verlag der Ko?niglich Preussischen Akademie der Wissenschaften: Berlin, 1908.
  25. Jefferson G. The Human Stomach and the Canalis Gastricus (Lewis) // J. Anat. Physiol. 1915, 49 (Part 2), 165–181.
  26. Baastrup C. I. Roentgenological Studies of the Inner Surface of the Stomach and of the Movements of the Gastic Contents // Acta Radiol. 1924, 3 (2–3), 180–204.
  27. Malagelada J. R., Go V. L., Summerskill W. H. Different gastric, pancreatic, and biliary responses to solid-liquid or homogenized meals // Dig. Dis. Sci. 1979, 24 (2), 101–110.
  28. Malagelada J. R. Quantification of gastric solid-liquid discrimination during digestion of ordinary meals // Gastroenterology. 1977, 72 (6), 1264–1267.
  29. Pal A., Brasseur J. G., Abrahamsson B. A stomach road or «Magenstrasse» for gastric emptying // J. Biomech. 2007, 40 (6), 1202–1210.
  30. Ferrua M. J., Singh R. P. Computational modelling of gastric digestion: current challenges and future directions // Curr. Opin. Food Sci. 2015, 4, 116–123.
  31. Grimm M., Scholz E., Koziolek M. et al. Gastric Water Emptying under Fed State Clinical Trial Conditions Is as Fast as under Fasted Conditions // Mol Pharm. 2017, Dec 4; 14 (12): 4262–4271.
  32. Bateman D. N. Effects of meal temperature and volume on the emptying of liquid from the human stomach // J Physiol. 1982, Oct; 331: 461–467.
  33. Ritschel W. A., Erni W. The influence of temperature of ingested fluid on stomach emptying time // Int J Clin Pharmacol Biopharm. 1977 Apr; 15 (4): 172–175.
  34. Park E. J., Ryoo K. K., Lee Y. B. et al. Protective effect of electrolyzed reduced water on the paraquat-induced oxidative damage of human lymphocyte DNA // J. Korean Soc. Appl. Biol. Chem. 2005, 48, 155–160.
  35. Hanaoka K., Sun D., Lawrence R. et al. The mechanism of the enhanced antioxidant effects against superoxide anion radicals of reduced water produced by electrolysis // Biophys Chem. 2004, Jan 1; 107 (1): 71–82.
  36. Shirahata S., Kabayama S., Nakano M. et al. Electrolyzed-reduced water scavenges active oxygen species and protects DNA from oxidative damage // Biochem Biophys Res Commun. 1997, May 8; 234 (1): 269–274.
  37. Lee M. Y., Kim Y. K., Ryoo K. K. et al. Electrolyzed-reduced water protects against oxidative damage to DNA, RNA, and protein // Appl Biochem Biotechnol. 2006, Nov; 135 (2): 133–144.
  38. Yanagihara T., Arai K., Miyamae K. et al. Electrolyzed hydrogen-saturated water for drinking use elicits an antioxidative effect: a feeding test with rats // Biosci Biotechnol Biochem. 2005, Oct; 69 (10): 1985–1987.
  39. Huang K. C., Lee K. T., Chien C. T. Reduced hemodialysis-induced oxidative stress in end-stage renal disease patients by electrolyzed reduced water // Kidney International. 2003, 64 (2), p. 704–714.
  40. Huang K. C., Yang C. C., Hsu S. P. et al. Electrolyzed-reduced water reduced hemodialysis-induced erythrocyte impairment in end-stage renal disease patients // Kidney Int. 2006, Jul; 70 (2): 391–398.
  41. Rubik B. Studies and observations on the health effects of drinking electrolyzed-reduced alkaline water // WIT Transactions on Ecology and The Environment. 2011. Vol. 153, 317–327.
  42. Landis G. N., Tower J. Superoxide dismutase evolution and life span regulation // Mech. Ageing Dev. 2005. Vol. 126, № 3. P. 365–379.
  43. Vorobjeva N. V. Selective stimulation of the growth of anaerobic microflora in the human intestinal tract by electrolyzed reducing water // Medical Hypotheses. 2005. 64 (3), p. 543–546,
  44. Wang Yu-Lian. Preliminary observation on changes of blood pressure, blood sugar and blood lipids after using alkaline ionized drinking water // Shanghai Journal of Preventive Medicin. 2001, 12.
  45. Jin D., Ryu S. H., Kim H. W. et al. Anti-diabetic effect of alkaline-reduced water on OLETF rats // Biosci Biotechnol Biochem. 2006, Jan; 70 (1): 31–37.
  46. Edy Siswantoro, Nasrul Hadi Purwanto, Sutomo Effectiveness of Alkali Water Consumption to Reduce Blood Sugar Levels in Diabetes Mellitus Type 2 // JDM. 2017, Nov, vol. 7, № 4, р. 249–264.
  47. Kim M. J., Kim H. K. Anti-diabetic effects of electrolyzed reduced water in streptozotocin-induced and genetic diabetic mice // Life Sci. 2006, Nov 10; 79 (24): 2288–2292.
  48. Kim M. J., Jung K. H., Uhm Y. K. et al. Preservative effect of electrolyzed reduced water on pancreatic beta-cell mass in diabetic db/db mice // Biol. Pharm. Bull. 2007, Feb; 30 (2): 234–236
  49. Li Y., Nishimura T., Teruya K. et al. Protective mechanism of reduced water against alloxan-induced pancreatic beta-cell damage: Scavenging effect against reactive oxygen species // Cytotechnology. 2002, vol. 40, № 1–3, p. 139–149.
  50. Oostenbrug G. S., Mensink R. P., Hardeman M. R. et al. Exercise performance, red blood cell deformability, and lipid peroxidation: effects of fish oil and vitamin E // J Appl Physiol. 1997, Sep; 83 (3): 746–752.
  51. Paik I. Y., Jeong M. H., Jin H. E. et al. Fluid replacement following dehydration reduces oxidative stress during recovery // Biochem Biophys Res Commun. 2009; 383 (1): 103–107.
  52. Baskurt O. K., Meiselman H. J. Blood rheology and hemodynamics. Semin Thromb Hemost. 2003; 29 (5): 435–450.
  53. Halliwell B., Gutteridge J. Free radicals in medicine and biology. Oxford: Clarendon, 1999.
  54. Nwose E. U., Jelinek H. F., Richards R. S., Kerr P. G. Erythrocyte oxidative stress in clinical management of diabetes and its cardiovascular complications // Br J Biomed Sci. 2007; 64 (1): 35–43.
  55. https://www.lvrach.ru/2003/04/4530251/.
  56. Azizova O. A., Aseichev A. V., Piryazev A. P. et al. Effects of oxidized fibrinogen on the functions of blood cells, blood clotting, and rheology // Bull Exp Biol Med. 2007, Sep; 144 (3): 397–407.
  57. Weidman J., Holsworth R. E. Jr., Brossman B. et al. Effect of electrolyzed high-pH alkaline water on blood viscosity in healthy adults // J Int Soc Sports Nutr. 2016, Nov 28; 13: 45.
  58. Chycki J., Zajac T., Maszczyk A. et al. The effect of mineral-based alkaline water on hydration status and the metabolic response to short-term anaerobic exercise // Biol Sport. 2017, Sep; 34 (3): 255–261.
  59. Heil D., Seifert J. Influence of bottled water on rehydration following a dehydrating bout of cycling exercise // J Int Soc Sports Nutr. 2009; 6 (Suppl 1): 1–2.
  60. Chycki J., Kurylas A., Maszczyk A. et al. Alkaline water improves exercise-induced metabolic acidosis and enhances anaerobic exercise performance in combat sport athletes // PLoS One. 2018, Nov 19; 13 (11).
Читайте также:  Как приготовить правильный шашлык у георга

Е. А. Хохлова, доктор медицинских наук

ООО «Медицинский центр «Август», Чебоксары

Питьевая щелочная вода – насколько благотворно ее влияние на организм? Обзор литературы/ Е. А. Хохлова
Для цитирования: Лечащий врач № 6/2019; Номера страниц в выпуске: 44-49
Теги: физические нагрузки, кислотно-щелочной баланс, диабет

Источник

Оцените статью